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Algebraic structures related to reflection equations 
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t Yubwa lnslitute forlheorelical Physics ( Y I P ) ,  Kyoto University, Kyoto U, Japan 
t Research lnslitute for Mathematical Sciences (RIMS), Kyolo University, Kyoto 606, 
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Received 22 May 1992 

AbslmeL Quadratic algebras dared IO lhe reflection equations are introduced. They 
are quantum group mmcdule algebras. llw quantum group F,(GL(Z)) b taken as the 
example. Ihe properties of the algebras (centre, Rprexntations. Ralizalions, real forms, 
fusion pmcedure ete) as well as lhe generalizations are discussed. 

1. Introduction 

Progress in understanding the algebraic roots of the quantum integrability achieved in 
the last few decades has already resulted in the introduction of several new algebraic 
objects, such as the Yang-Baxter equation (YBE), quantum groups and quantum 

with another item: the reflection equation (RE), which has arisen recently in several 
independent contexts. 

-1nohr-r nrrhnnna o n A  n..sA-t:r -1nohr.l. T I  ~lnnmi +h-+ Ihn Xrt chn..IA Im nnr:rhnA 
"6'Y'YY, CA'..".'p Y.," '1yY"'"L.Y Y.6'"'"". I, .,11.11., L U S L  U,., 11.7L Y l l Y U l "  Y l  C..... Cllb" 

The RE reads 

1 2 2 1 
R( U - v ) K (  u)R(u + v ) K (  v )  = I<-( v )R(  U + u ) K (  u)R(  U - v )  (1) 

2, - . where K ( u )  is a square N x N matrix, Ti-= K@id,, It = id, @ I< (the notation 
is usual in the quantum inverse scattering method), and R ( u )  is a solution to the 
YBE. One can also consider (1) as defining relations for the associative algebra A 
generated by the elements of the matrix IC( U )  111. 

The RE introduced in [2] as the equation describing factorized scattering on a half- 
line, and the related algebra A soon found quite different applications in quantum 
current algebras [3] and integrable models with non-periodic boundary conditions 

Since the constant (i.e. not including the spectral parameter U )  solutions to the 
YBE are extensively used in quantum group theory [SI, it is quite natural to study 
a version of the RE without the spectral parameter. Though such an equation and 
the related algebras (for different R-matrices) has already appeared in several papers 
[6-121, they were not distinguished as separate objects of study until recently. 

$ Permanent address: Steklcw Malhematical Inslilute, Fonlanh 27, SI. Peteraburg 191011, Russia. 
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In the present paper we collect the basic facts which are necessary for any 
systematic study of the RE. We restrict ourselves to the case of the simplest quantum 
group F,(GL(Z)) and choose the following form of the RE 

1 2 2 1  
Rh'Rt l I i  = K R "  KR.  (2) 

This paper is organized as follows. After intrcducing the basic definitions and 
notation the general properties of the quadratic algebra A defined by (2) are described 
in section 2. They are discussed and partially proven in section 3. In section 4 a few 
comments are made on the representations of A. In section 5 some equivalent variants 
of the RE are pointed out as well as the relations between A and other algebras. In 
conclusion, we discuss same generalizations of the RE and its applications. 

2. Definitions 

The quantum group F 3 Fq(GL(2)) can be defined as the associative algebra 
generated by four elements a ,  6, c ,  d and the relations 

ab  = qba bd = qdb [ a , d ]  = w b c  

a c  = qca cd = qdc [b ,  c] = 0 

q being a complex parameter and w = q - q-I. Introducing the matrix T 

(3) 

and using the notation 
the compact form [SI 

= T 8 id, $ id 8 T one can rewrite the relations (3) in 

1 2  2 1  
RTT = T T R  

where the R-matrix is given by 

n R" = [ q  1 w'i 
(4) 

and 1, means transposition with respect to the first space in C2 @ Cz. 

Remark. If we replace the R-matrix in (4) by PR-'P,  where P is the permutation 
operator in C2 @ C2, the commutation relations (3) remain the same. The 
consequences of this fact are discussed in section 6.2. 
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The Hopf algebra structure is defined on F after introducing the comultiplication 
map A : F - F @ F, co-unit map c : F + C and coinverse map s : F -+ F by the 
formulae 

A(T)  = TlT2 E ( T )  = id s ( T )  = T-I 

2 where (TITz);, = 
thought of as the elements of the matrix I C  

Tib @ Tkj. 
Now define the associative algebra A by four generators a, p, y, 6 ,  which can be 

and by the quadratic relations (2) or, more explicitly 

a y  = q2ya [a, 61 = 4 q P  + Y)Y 
(6) 

[a,@] = w a y  
2 [ @ > Y I  = 0 [P.61= ~ 7 6  76 = q 6 7 .  

The algebra A has the following properties 

1. A is a Poincark-Birkhoff-Witt (PEW) algebra which means that the linear space 
spanned by the monomials of order p in the generators 4 7 6  has the same 
dimension as in the commutative case, that is ( p  + 3 ) ! / p ! 3 ! .  

2. A is an F-comodule algebra that is there exists a map 'p (coaction of F) 
'p : A - F @ A which is consistent with the comultiplication A 

( A  @id)  o 'p = (id @ (0) o $o (7) 

and the co-unit E 

(6 @id) o'p = id (8) 

and, besides, is an algebra homomorphism. 
By virtue of the duality between F = F9(GL(2)) and the quantum algebra 

U9(s1(2) )  the dual map 'p' : U9(s1(2))@A + A defines the structure of Uq(s1(2))- 
module algebra on A. 

3. The centre of A is generated by two elements (for generic q. not root of unity) 

c1 = - qy c2 = a6 - q'py. (9) 

4. There are three real forms of A consistent with three known real forms of F 
Fq(U(2) ) ;  F,,(U(l;l)) and Fq(GL(2:R)). 

5. The two-sided ideal generated in A by the relation cI,= 0 is invariant under the 
coaction 'p and the corresponding quotient algebra is somorphic to the quantum 
homogeneous space. 
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3. Discussion and proofs 

P P Kulish and E K Sklyanin 

3.1. In order to prove the PBW property of A it is necessary to verify that any 
monomial in a p y 6  can be expanded uniquely into the sum of alphabetically ordered 
monomials. The passibility of alphabetical ordering b easy to establish using the 
commutation relations (6). As for the linear independence of alphabetically ordered 
monomials, it is sufficient to verify it only for cubic monomials [13,14]. 

3.2. The (left) coaction of F on A is defined on the generators by the formula 

p( h') = TKT'  (10) 

where 1 stands for the matrix transposition, and is extended to the whole algebra A 
a iiomomotpiiisni, sr exampie 

~ ( p )  = a c a  + b c y  + adp  + bd6. 

Verification of the F-comodule algebra axioms (7). (8) is a matter of direct calculation 
based on the commutation relation (4) and the equivalent relations 

2 1  1 2 2 1  2 1 &Rt!$t = TtR'lT = T'T'R T ' R t l T  = TR'IT' 

obtained from (4) using transpositions and the symmetries 

P R ' P  = R [P, R'I] = 0 (11) 

of the R-matrix (5). Here superscript t means total transposition and P is the 
permutation operator in IP @ C2. 

The duality behveen the quantum group F = Fq(GL(2)) and the quantum 
algebra Uq(s1(2)) [S, U] implies that A is also a Uq(sl(2))-module algebra. 

The algebra Uq(s1(2)) is generated by three elements H ,  X,, X -  and the 
relations 

q2H - q-2H 

[ H ,  X,] = rtx ,  [ X ,  1 x-1 = 
9 - 4-1 

or in matrix form 

where 

" w x -  L - = (  q-" :) 
L + =  (qo q - J f )  - w x +  9 

and 
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The pairing ( , ) between F and U,(s1(2)) is described by the relations [SI 

where, as usual, the subscripts mark the spaces where the corresponding R-matrices 
act non-trivially. 

The above formulae allow us to calculate the corresponding action 'p' of U,(s1(2)) 
c?B i! 

1 ' p * ( ~ * ) k  + R;~- (R ; )~Z  

or, more explicitly 

3.3. Before we proceed to the discussion of the centre of A let us recall few facts 
about the quantum group F. The quantum determinant det, T generating the centre 
of F can be constructed via the fusion procedure technique 15,161 

1 2  1 2  
P-TT = P-TTP- = det, TP-. (13) 

The rank-one projector P- and the complementary rank three projector P+ in 
U? @U? are defined by the spectral decomposition of the modified R-matrix [17] 

E PR = qP+ - 4-l P- . (14) 

The commutativity of det, T with T and its group-like property A(det, T )  = 
det, T @ det, T follow from the relation (41, e.g. 

1 1 2 2  1 2  I ? .  
A(det,T) = P-TlT2TIT2= P ~ T , T , P ~ T , T , = d e t , T @ d e t , T .  

quadratic form E ,  

It is well known that the quantum group F,(GL(2)) possesses the invariant 

(15) 
0 1  

E ,  = ( -q o) T E ~ T '  = T'e,T = ~ , d e t , T .  

The last relation, rewritten as E,,,n(~i)mnTniTj,,, = ( E ' ) . ; ,  allows us to 
~e uace for i(-mairices which ij hvariant &Aer i'ne qua"tum 

t r , l i E  t r E i K =  t r ,T l iT ' /de t ,T  T E  F,(GL(2)). (16) 

group coaction (10) up to det, T factors 
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Now we can prove that cl and c2 defined by (9) lie in the centre of A. Note 
that, by definition, cI = U, I<. %ke trq of the relation (2) with respect to the first 
space in C* @C2. Then, using the fact that the R-matrix, as a solution to the WE, !s 
a representation of the algebra F (4) having the quantum determinant det, R = q, 
and the identities (15), (16) one obtains from the LHS of (2) the equality 

(1) 1 2 2 
tr,(RKR")IC = qc,(Ii)IC 

and from the RHS of (2) respectively 
2 (1) I 2 

K t r q ( R t l K R )  = Iic,(l<)q 
which establishes the commutativity of cl( IC) with the generators Ii. of A. 

from the left by by the permutation operator P 
In order to obtain the expression for c2 analogous to (13) multiply the RE (2) 

1 2 1  2 k IC R" IC = IC R" IC k 
and then by the rank-one projector P-. %king into account (14) one gets 

1 2  1 2 
P- IiR" IC = P- ICR" IC P- = c2( li) P- . 

The proof of the commutativity of c2( Ii) with the generators Ii of A uses the 
same fusion technique as the above proof for det, T. The fact that the quantum 
determinants of R and R'1 are numbers 

( I2 )  1 3  R'? - p(") 
R31 32 - q - 

PLl2)R R - p(12) 
32 31 - 4 - 

again plays the crucial role. 
Rewriting q2c2( K)IC as 

3 

1 2  3 
q2 PL1" I: R'1 iw I? = PL1" Ii R: IC Ril R:; li R,, R,, 

and then using the YBE for R and RI' and RE several times one finally arrives at 

which proves the assertion. 

quantum group coaction (10) 
Note that the central elements are transformed homogeneously under the 

v :  c l ( I i )  +det ,Tc,(I i )  ~ , ( I < ) + ( d e t , T ) ~ c ~ ( l i ) .  (17) 
The transformation law for cl( I<)  follows from (16). The corresponding formula 

for c2( Ii) follows from (15), (16) and the identity 

Futhermore KE,K = C ~ E ~  - qclIi. 

tr, I < E , I < =  ( 1 + q 2 ) c 2 ( ~ < ) - q ( c l ( l i ) ) 2 .  

The formula (17) and the following inversion formula for the I<-matrix 

allow us to think of c2 as the quantum deteminant of IC. 
We have no proof that for generic q the centre of A is generated by c1, c2 though 

it is a highly plausible conjecture taking into account the analogous results for the 
quantum group F. 
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3.4. Let us now discuss the real forms of A. It is well known that for Fq(GL(2)) 
there are three real forms [SI. For Fq(U(2)) the parameter q is real Q = q and the 
*anti-involution is given hy 

{U*, b', c ' , d ' }  = { d , - q c ,  -q-'b,a). 

For Fq(U( l , l ) )  again Q = q and 

{U*, b ' , c ' , d ' )  = { d , q c , q - ' b ,  a). 

For Fq(GL(2,R)) the parameter q is unitaty 4 = l / q  and 

{ u ' , b * , c ' , d * }  = { a , b , c , d ) .  

The corresponding real forms of A are 

FqW(2)) : {a ' ,P ' ,7* ,6 ' )  = { g b , - P , - ~ , q - ' a )  

Fq(U(L1)) : {a*,/3*,7*,6*1= P,r,n-'aI 
F,(GL(Z,I) : {a*, P' 3 Y*, 6*1= {a, Y + q c , ,  979 6). 

It is easy to verify that these real forms of A are consistent with those of F, that 
is p ( q )  = p(Kij)*. 

3.5. The invariance of the ideal cl = 0 under the coaction ~p follows immediately 
from (17). The resulting quotient algebra is generated by three generators a? 7. 6 
(0 = q y )  and the relations 

a y  = q'ya 7 6  = 9'67 [a, 61 = q(q' - q-')?', 

The algebra is isomorphic to the quantum homogeneous space for Fq(SL(2)) .  It 
is also isomorphic to the suhalgehra of F generated by the elements of the matrix 
TTt [5] (see [18] for the F q ( G L ( n ) )  case). 

4. Representations 

The representation theory for the algebra A is a topic deserving special investigation. 
We restrict ourselves to a few remarks. 

There are two one-dimensional representations of A 

As shown in the next section, under the additional condition of y being invertible 
the quotient algebra A / ( q  = 1) is isomorphic to the quantum algebra Uq(s1(2)) .  
Hence, the irreducible representations of Uq(s1(2)) are translated into those of A. 
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Another way to construct representations of A is to use the coaction 'p (10) of 
F. Any pair of representations n of A and p of F 

n : A + E n d ( V )  p :  F + E n d ( W )  

gives rise to another representation of A 

( p @  n) o 'p: A -+ End(W @ V). 

It is an open question whether this construction generates a new irreducible 
representation of A provided n and p are irreducible. It is also unknown if any 
irreducible representation of A can be decomposed into r and p. 

Representations of comodule algebras related to the reflection equations with R- 
matrices corresponding to other quantum (super)groups such as Fq(GL(mln))  were 
studied in [19]. 

5. hriants d RE and related algebras 

5.1. Consider the algebra X defined by the generators x ,  y ,  U, v and by the relations 

X Y  = q y x  xu = qux 

uv = q v u  y u  = uy y v  = q v y .  

x u  = v x  + w u y  

Introducing the column X and row Y 

x=(;) Y = ( u U )  

one can represent the above commutation relations as the exchange algebras [7,8,11] 

1 2  
(19) 

(20) 

1 2  2 1  2 1  
RXX = qXX YYR= qYY 
1 2 2 1  2 1 1 2  
YR"X = XY YR"X = XY. 

The algebra X has a central element { = Ye,X = u y  - q v x .  The subalgebras 

By virtue of the relations (19), (20) the matrix 
of X spanned by X or Y are isomorphic to the 'quantum plane' [13]. 

satisfies the RE (2 ) ,  the above formula thus giving a homomorphism A + X .  Note 
that for the realization of A obtained one has c 2 ( l i )  = 0 and I<e,li = CK = 
-qc,( K ) K .  



Reflection equations and related algebras 5971 

5.2. In the papers [6 ,7  another version of the RE was obtained 

(21) R d ~ - l &  = &~-ldi i  p R p  M = ( 8  e 1 7  T ) .  

The mrresponding algebra B is an F-comodule algebra with the coaction 

$ : B + F @  B + ( M )  = TMT-' 

In the case of F = F9(GL(2)) the Fcomodule algebra B is isomorphic to A 
because of the relation (15). The isomorphism is given by the formula 

which implies the relations between the central elements 

Cl(K) = 0 -  47 = q2T G Z1(M) 
c 2 ( l C ) = a 6 - q 2 p y =  q 3 ( c r - q - * q 8 ) = q  3 z 2 ( M ) .  

Under this isomorphism the q-trace (16) maps into tr D M ,  D = diag(q-',q) 

The algebra B is connected closely to the quantum algebra Uq(sl(2)) [6,7. 
introduced in [5], see also [lo]. 

Namely, the matrix M can be realized in terms of L* (12) 

M = s( L + ) L -  (22) 
where s is the antipode in U9(s1(2)): s ( H )  = -H, s ( X , )  = -q+lX,. 

The formula (22) describes the algebra homomorphism x : B -+ Uq(sl(2)) 

for which z , ( M )  is proportional to the well known Casimir operator for U9(s1(2)) 
and z , ( M )  = 1 [lo]. 

It is easy to see that the inversion of the homomorphism x needs invertibility 
of the element T (which is not the case for the one-dimensional representation 
M = K(')e9, see (18)). If the element r is supposed to be invertible one can 
introduce in B a coproduct induced from U,(s1(2) )  [7]. 

5.3. We conclude this section with describing the classical limit of A. Let q = eh. As 
h i 0 or q -+ 1 the algebra A becomes commutative, its commutator giving rise to 
the Poisson bracket [ , ] = -h{ , ). The commutation relations (2) are transformed 
into the Poisson brackets relations 

1 2  1 2 2 1  
{ K ,  Iiv)= [r-, k&+ l i r l l f i  - l ir t l l i  (23) 

where r is the classical R-matrix R = 1 + h r  + O(h2)  

Fixing values of the central functions c1 = P - y and c2 = det I< = a6 - p-, one 
obtains the foliation of the 4-dimensional space spanned by a076 into 2-dimensional 
manifolds on which the Poisson bracket (23) is non-degenerate. 
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6. Generalizations 

P P KuliFh and E K Sciyanin 

61. h t  us discuss now the fusion procedure for the RE. It does not differ much 
from the case of the W E  15,161. The peculiarities of the RE case are well seen in 
the simplest spin-1 case. The R-matrix in (4) R E C2 @ C2 intertwines two spin-ln 
corepresentations of F9(GL(2)). The R-matrix in C2 @ C3 is 

Rl(2) = Pt RI,, RI2 = P+ RI,, RnP+  

where P+ is the rank-3 projector (14) from C2 @ C2 onto C3 and the corresponding 
spaces are kbelled respectively by the indices 2, 2' and (2). We shall also use 

- ine 3 x 3 matrix J 
2 2' 

J = P+ IC R;, I<- P, 

satisfies the RE in C2 @C3 

and also the RE in C3 @ C3 

The entries of the matrix J generate a subalgebra A' of A which is also an F- 
m-ideal that is (0 : A' + F @ A'. The analogous fusion procedure for the spectral 
parameter dependent RE (1) was developed in [20]. 

There is no doubt that, being properly generalized, the above described fusion 
procedure should be able to produce solutions to the RE in matrices of any 
dimension corresponding to higher finite-dimensional irreducible corepresentations of 
Fq(GL(2)). At least for the one-dimensional representations of A (18) the expression 
for the 'universai ic-matrut' can be written expiicitiy (see pi] for ii(i) and [ iz , i9]  
for Ii-(")). 

6.2. Throughout this paper we considered the algebra A defined by the relations (2) 
corresponding to the R-matrix (5) of the quantum group F9(GL(2)). However, 
the proof of the comodule algebra property does not use anything besides the 

any R-matrix satisfying (11) and the related quantum group FR defined by relations 
(4) there corresponds some F,-comodule algebra A, defined by relations (2). 

The conditions ( l l ) ,  however, are not essential and can be disposed of. Let us 
extend the algebra FR introducing another matrix of generators S in addition to T 
and imposing the commutation relations 

mmmutltie3 .e!rk?as (4) nsd the symmetries (11) e! the p.-mntrk. 'I??erefere, to 
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parametrized by four R-matrices. It is easy to verify that if I( obeys the relation 

1 2 2  1 
R(')KR(2)K = KR(3)I(R(4) (29 

then the matrix TICS obeys the same relation provided matrix elements of K 
cOmmute with those of T and S. 

Suppose now that S = a ( T )  where U is an anti-automorphism of matrix algebra 
that is ~ ( z y )  = a ( y ) u ( ~ )  for any number matrices z, y. Then all the R-matrices 
in (25) can be expressed in terms of the matrix R defining the quantum group (4). 
The resulting algebra is an F,amodule algebra with the coaction K -+ T K a ( T ) .  

Note that there exists a remarkable ambiguity in the choice of the R-matrices. 
Namely, one can make the substitution R + PR-IP independently in any of the 
matrices R(') which does not affect the commutation relations (24), d the remark 
immediately after formula (5). Consequentely, there exist at least 24 = 16 a priori 
non-equivalent algebras sharing the Same comodule structure. The interrelations of 
these algebras will be described in a separate paper. 

In the case of u ( T )  = T' the R-matrices are 

R(') = R or E-' 
R(z) = Rtl or (E1)** 
R(3) = (E)'z  or (R-I)'2 

R(4) = E' or (R-')' 

where, as in (21), the notation 
R(') one obtains from (25) the equation [19] 

E P R P  is used. Choosing the first option for every 

1 2 2 -  I -  
RKR'IK = KR'2IiR' (26) 

coinciding with the RE (2) if R has the symmetries (11). 
Another example is provided by o(T)  = T-'. In this case 

R(') = R or E-1 

R(z) = R-' 

R(') = R-' or R 

or ii - 

R(4) = E or R-1. 

The choice of the first option for every R(') leads to the algebra D described in 
section 5.2. 

6.3. 
of the equation. Note that formula (10) for the coaction of F is equivalent to 

We conclude our discussion of the RE with a remark concerning the very form 

(27) ~: I<-*l'2 T81T'ZIi-181f 
11 12 

where the indices are shown explicitly. Here we use the mmmutativity of T and IC 
and assume summation over repeated indices. 
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Formula (27) suggests that K can he thought of as a bivector (contravariant 
tensor of the second order). In a compact form one can write (27) as 

1 2  

(28) (o : K12 -+ TT . ICl2 

(the notation s self-evident). 
Analogously, equation (26) can be rewritten as 

or, using the same notation as in (28) 
- -  

RI2 RI,, K11, Kn# = RI,,, RI,, Kz2< K11,. (29) 

Moving two R-matrices from the right-hand side of (29) to the left-hand side one 
obtains 

(30) RG' - 1- -1  R1,,, RI2 RI,, K 1 1 ,  I i , ,  = K22r IC,,, . 

Combining the two indices in I<'*'z into one composite index and the four R- 
matrices in (30) into one composite R-matrix we observe that equation (30) describes 
a sort of exchange algebra (19). 

The case a ( T )  = T-I leads in the same way to a mixed tensor having one upper 
and one lower index. 

This observation opens a road to a far-going generalization of the algebra A. 
Acting in the Same spirit one can introduce algebras corresponding to the quantum 
tensors with any number of upper and lower indices. The papers [13,22] where the 
quantum multilinear algebras are studied might be of relevance in performing this 
program. We hope to touch on this subject in a separate article. 
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